Profile
理学部 数理科学科
キーワード
曲がった空間をとらえる「リーマン幾何学」
曲がった空間
あなたも地球が球体であることは知っていると思います。しかし、私たちが普段地上で暮らしていると、地表が湾曲していることを認識することは難しいでしょう。古代ギリシャ人は測量や天体観測から地球が球体であることを知っていて、さらに幾何学的考察からその半径も見積もっていたといいます。幾何学を意味する英語の「geometry」はもともと測量を表す言葉が語源となっています。
地球儀を伸び縮みさせることなく、平面地図として正確に表すことはできません。球面の一部を切り取ってきて、それを平面に引き延ばそうとすると、どうしてもしわが寄ってしまうのです。これは球面が曲がっているからです。リーマン幾何学ではこのように曲がった空間を数学的に取り扱い、「曲率」という概念で空間の曲がり具合をとらえます。
宇宙空間は曲がっている!?
宇宙というと平らな空間がどこまでも広がっているというイメージがありますが、アインシュタインの一般相対性理論によると、実は時空はぐにゃぐにゃと曲がっているのです。宇宙の中に住む私たちにとって、空間が曲がっているというのは、ちょっと理解しにくいかもしれません。光は空間を最短距離で進むという原理がありますが、そのような軌跡をリーマン幾何学では「測地線」と呼びます。光の軌跡を観測することによって、実際に宇宙は曲がっていることを知ることができます。
「微分幾何学」で宇宙の形を探る
空間の曲がり具合、空間の構造を数学的に解き明かすというのは、容易なことではありません。曲面など二次元のものは図に表せますが、高次元になると、それを図に表すことはできず、イメージすることさえも難しくなるからです。微分幾何学ではこのような空間を数式によって表し、その幾何学的な性質を明らかにします。微分幾何学は歴史的にも理論物理学と相互に影響を与えながら発展してきました。いつの日か宇宙全体の形が解明され、リーマン幾何学によって表された宇宙地図を使って宇宙旅行をする日が来るかもしれません。
シャボン玉はなぜ丸い? 最適な形を探求する「微分幾何学」
等周不等式
平面において、与えられた長さをもつ閉曲線のうち、囲む面積が最大となる図形は円です。これは等周不等式と呼ばれます。直感的には明らかなように思われますが、これを数学的に証明することは簡単ではありません。この問題が難しい理由は、長さが与えられたとき、その長さをもつ閉曲線が無数に存在することから来ています。
エネルギーが最小の形が最適な形
世界に存在するさまざまなもののうち、自然にできているものの多くは、ある種のエネルギー的な安定性をもちます。例えば、ワイヤーを折り曲げて作ったフレームに石けん液をつけて膜を張らせるとき、ワイヤーフレームに張る石けん膜は、そこに働く表面張力のエネルギーが最小になるよう、面積も最小になる形で安定します。例えば、2本の円形のワイヤーフレームを平行にしてその間に石けん膜を張らせると、どんな形になるでしょうか。円柱のような膜が張るだろうと思われがちですが、実際は、膜の表面はとっくりの首のように内側にくびれた形になります。それは、これが膜の表面積を最小にする形だからです。シャボン玉が球面なのも、同じ体積を囲む曲面の中で球面が最も表面積が小さく、表面張力のエネルギーが最小になる形だからです。
球面以外のシャボン玉も存在する!?
では、球面が最適な形だとすると、球面以外のシャボン玉は存在しないのでしょうか。実際には、球面以外のシャボン玉を見たことはないでしょうが、曲面が自分自身と交差したときすり抜けると仮定すると、球面以外にもシャボン玉の数学モデルを作ることができることが証明されていて、その形は、一つ穴のドーナツのような形になります。
ある種の条件の下で最適な形を探すという学問を、幾何学的変分問題と呼びます。無限の自由度をもつものの中から最適な形を探すことは極めて困難な問題ですが、エネルギー的に安定した形は、無駄がなく洗練された美しさがあります。数学というと、数字だけを扱う無機質な学問のようにも思われがちですが、実は極めて創造的で夢のある学問なのです。
高校生・受験生の皆さんへのメッセージ
現代の幾何学は「図形」というよりは「空間」を扱う学問となっています。ある種の条件下で最適な形を探すという「幾何学的変分問題」は、難しい問題ですが、数学のさまざまな分野や物理学など自然科学とも深く関わりがあり、やりがいがあります。高校で学ぶ数学は、問題を解くことが中心になりますが、数学を深く理解するためには、問題の裏にある理論を体系的に理解することが大切です。そうした理論を学ぶために、ぜひ、たくさんのことに興味を持ってください。数学的思考は、疑問を持つところから生まれてくるのです。
夢ナビ編集部監修