ABE Yuina
助教
阿部 結奈 アベ ユイナ あべ ゆいな
プロフィール
所属
東京都立大学システムデザイン学部 機械システム工学科
システムデザイン研究科 機械システム工学域
最終学歴・学位
博士(工学)(2020年3月・東北大学)
研究
研究テーマ
生体計測
詳細情報
“Intradermal Measurement of Reactive Oxygen Species Using Open-Tip Porous Microneedles,” SSRN Electron. J., vol. 265, no. April, p. 111877, 2022, doi: 10.2139/ssrn.4095091.
“Electrical aspects of skin as a pathway to engineering skin devices,” APL Bioeng., vol. 5, no. 4, p. 041509, Dec. 2021, doi: 10.1063/5.0064529.
“Porous microneedle-based wearable device for monitoring of transepidermal potential,” Biomed. Eng. Adv., vol. 1, p. 100004, Jun. 2021, doi: 10.1016/j.bea.2021.100004.
“Totally organic electrical skin patch powered by flexible biobattery,” J. Phys. Energy, vol. 2, no. 4, p. 044004, Oct. 2020, doi: 10.1088/2515-7655/abb873.
“Red light-promoted skin barrier recovery: Spatiotemporal evaluation by transepidermal potential,” PLoS One, vol. 14, no. 7, p. e0219198, Jul. 2019, doi: 10.1371/journal.pone.0219198.
“Transepidermal Potential of the Stretched Skin,” J. Biomech. Eng., vol. 141, no. 8, p. 084503, Aug. 2019, doi: 10.1115/1.4043522.
“Minimally-invasive transepidermal potentiometry with microneedle salt bridge,” Biomed. Microdevices, vol. 18, no. 4, p. 55, Aug. 2016, doi: 10.1007/s10544-016-0080-0.
“Highly stretchable cell-cultured hydrogel sheet,” RSC Adv., vol. 5, no. 81, pp. 66334–66338, 2015, doi: 10.1039/C5RA11059A.
“Portable Micropatterns of Neuronal Cells Supported by Thin Hydrogel Films,” ACS Biomater. Sci. Eng., vol. 1, no. 5, pp. 329–334, May 2015, doi: 10.1021/acsbiomaterials.5b00020.
“Electrical aspects of skin as a pathway to engineering skin devices,” APL Bioeng., vol. 5, no. 4, p. 041509, Dec. 2021, doi: 10.1063/5.0064529.
“Porous microneedle-based wearable device for monitoring of transepidermal potential,” Biomed. Eng. Adv., vol. 1, p. 100004, Jun. 2021, doi: 10.1016/j.bea.2021.100004.
“Totally organic electrical skin patch powered by flexible biobattery,” J. Phys. Energy, vol. 2, no. 4, p. 044004, Oct. 2020, doi: 10.1088/2515-7655/abb873.
“Red light-promoted skin barrier recovery: Spatiotemporal evaluation by transepidermal potential,” PLoS One, vol. 14, no. 7, p. e0219198, Jul. 2019, doi: 10.1371/journal.pone.0219198.
“Transepidermal Potential of the Stretched Skin,” J. Biomech. Eng., vol. 141, no. 8, p. 084503, Aug. 2019, doi: 10.1115/1.4043522.
“Minimally-invasive transepidermal potentiometry with microneedle salt bridge,” Biomed. Microdevices, vol. 18, no. 4, p. 55, Aug. 2016, doi: 10.1007/s10544-016-0080-0.
“Highly stretchable cell-cultured hydrogel sheet,” RSC Adv., vol. 5, no. 81, pp. 66334–66338, 2015, doi: 10.1039/C5RA11059A.
“Portable Micropatterns of Neuronal Cells Supported by Thin Hydrogel Films,” ACS Biomater. Sci. Eng., vol. 1, no. 5, pp. 329–334, May 2015, doi: 10.1021/acsbiomaterials.5b00020.
- 生体機械概論
- 機械システム基礎実験 a
- 機械システム基礎実験 b
- 生体機械応用実験
- 生体機械工学演習Ⅰ
- 機械システム工学概論Ⅰ
- 知能機械システム基礎実験
- 組織再編前旧課程の同時開講科目等が含まれており、掲載されている全ての科目を開講するわけではありません。